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Abstract

The premature infant gut microbiome plays an important part in infant health and development, and recognition
of the implications of microbial dysbiosis in premature infants has prompted significant research into these issues.
The approaches to designing investigations into microbial populations are many and varied, each with its own
benefits and limitations. The technique used can influence results, contributing to heterogeneity across studies. This
review aimed to describe the most common techniques used in researching the preterm infant microbiome,
detailing their various limitations. The objective was to provide those entering the field with a broad understanding
of available methodologies, so that the likely effects of their use can be factored into literature interpretation and
future study design. We found that although many techniques are used for characterising the premature infant
microbiome, 16S rRNA short amplicon sequencing is the most common. 16S rRNA short amplicon sequencing has
several benefits, including high accuracy, discoverability and high throughput capacity. However, this technique has
limitations. Each stage of the protocol offers opportunities for the injection of bias. Bias can contribute to variability
between studies using 16S rRNA high throughout sequencing. Thus, we recommend that the interpretation of
previous results and future study design be given careful consideration.
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Introduction
The premature infant gut microbiome has become an
important, modifiable factor in the field of neonatal
intensive care. Compared with infants born full-term,
the characteristic microbiome of premature infants
(born <37 weeks gestation) is dysbiotic: highly variable
[1–3], low in diversity [4–6], low in common commen-
sals [1, 6, 7], and harbouring more potential pathogens
[8, 9]. This dysbiotic microbiome composition puts
immune-compromised premature infants at an increased
risk of acute and chronic disease, and developmental
abnormalities [10–12]. Premature infants are also more
likely to be born via caesarean section, be formula fed,
receive antibiotics, and spend much of their early life in

a clinical environment, all of which have the potential to
exacerbate the microbial dysbiosis [1, 2, 13, 14].
Unfortunately, understanding this microbial compos-

ition is confounded by the diversity of investigative
methods used. Methodologies for examining the micro-
biome are complex, technically challenging and vary
between laboratories. Therefore, it is impossible to rule
out protocol bias as a factor contributing to the variabil-
ity seen between studies. In fact, a number of studies
have demonstrated the role of methodological bias in
influencing the outcomes of microbiome analysis
[15, 16], thus contributing to significant heterogeneity in
results between studies.
This review aimed to describe the most common

techniques used in researching the preterm infant micro-
biome. We chose to focus on those studies investigating
preterm infants, due to the explosion of interest into this
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area, although these techniques can also be applied to
microbiome study of full-term infants. This magnified
interest likely stems from the disproportionate health bur-
den placed on preterm infants and its link to the micro-
biome. The objective of this review was to provide those
entering the field, particularly those in neonatal clinical
care, with a broad understanding of the different methods
used, so that literature interpretation and future study de-
sign can be enhanced. This review identifies and describes
the most commonly used methods for examining the pre-
mature infant’s microbiome, and maps this information
against studies comparing efficacy of techniques. This
process is designed to illuminate which techniques will be
most appropriate for the examination of the microbiome
of premature infants

Methods
Search and Eligibility Criteria
The PRISMA (Preferred Reporting Items for Systematic
Reviews and Meta-Analyses) approach (Fig. 1), was
taken to search for relevant literature up until August
2020. Studies investigating the premature microbiome
were identified via searches in the SCOPUS and PubMed
databases using the search terms; “Microbiota” AND
“Infant” AND “Premature” AND “Faeces”. Journal arti-
cles describing a wide variety of study designs, sample
sizes, interventions, comparators and outcomes were in-
cluded in this review. Articles were excluded if they were
not original studies, were case studies, were not in
English, were unable to be accessed or did not specifically

investigate the premature infant microbiome. Reviews
found in the initial search were also used to locate other
papers that addressed the review question.

Data Collection Process
A standardised data collection protocol was established
to extract all relevant information for qualitative
analysis. Author, date of publication, aims/hypotheses, a
summary of the methods, a summary of the findings and
limitations were recorded. Methodology-specific infor-
mation was also collected for primary techniques,
secondary techniques, storage and DNA extraction.
Emphasis was placed on 16S rRNA short amplicon
sequencing, as this methodology was the most common
primary technique, and further information was
collected for target variable regions, platform, pipeline
and reference databases.

Results
The review of the literature explored the methodological
diversity used in the study of the premature infant
microbiome, and a summary of the major techniques
used across the studies is presented in Fig. 2. The out-
come of the systematic review is summarised in Fig. 1.
Two hundred and seventeen articles were identified. Of
these 137 articles remained after duplicates were re-
moved, with a further 45 articles removed after assessing
the full article for eligibility. A total of 92 articles were
reviewed. There was a surprising lack of detail displayed
in the methods section of many studies, despite there

Fig. 1 PRISMA flow diagram describing the process of study collection and inclusion
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being several technical choices at each stage of the
workflow with the potential to contribute to bias. The
summary information is based only on the data that was
made available.

Primary Techniques
Thirteen techniques for characterising the preterm in-
fant gut microbiome were identified (Fig. 2). A wide
range of techniques have been used as the primary tool
for microbial compositional analysis including:

� Traditional culture-based techniques [17–21],
� 16S rRNA short amplicon sequencing [3, 5–7, 13,

22–65],
� Shotgun metagenomics [2],
� Temperature gradient gel electrophoresis (TGGE)

[9, 10, 66–72],
� Denaturing gradient gel electrophoresis (DGGE)

[8, 73–76],
� HITChip [77, 78],
� Fluorescent In-Situ Hybridisation Analysis (FISH)

[79, 80],
� Terminal restriction fragment length polymorphism

(TRFLP) [81–83],
� Quantitative PCR (qPCR) [9, 44, 84–93],
� Long-read nanopore sequencing [94], and

� Random amplified polymorphic DNA/pulsed-field
gel electrophoresis (RAPD/PFGE) [95].

Molecular techniques dominated, specifically 16S
rRNA short amplicon sequencing, which made up 53.2%
of primary techniques. qPCR was the second most com-
monly used technique, used in 13% of studies, with the
remaining techniques being used by ≤10% of studies
each. Traditional non-molecular techniques using select-
ive and differential agar medium represented a very
small fraction of the primary techniques used (5.4%),
and a further four studies used culture techniques as a
secondary method.

Storage Conditions and Extraction Protocol on DNA for
Molecular Techniques
Sample storage protocols were consistent across the mo-
lecular techniques. However, the DNA extraction tech-
niques used were highly variable. Freezing at -80°C
dominated storage methods for both faeces (71.4%) and
DNA (50%), with non-freezing protocols only used in
2.9% of studies. DNA extraction was the area demonstrat-
ing the greatest variability, with 15 different methods uti-
lised. The QIAamp DNA Stool Kit, a kit that combines
heat, chemical and enzymatic lysis was the most com-
monly used (40.3%), with using no kit at all (14.9%) the
second most common option. The PowerLyzer PowerSoil

Fig. 2 Flow diagram describing different workflows and proportions of techniques used for microbiome analysis in premature infants
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kit was third (10.4%), with the other twelve kits making up
the remaining 34.4%.

16S rRNA Amplicon Sequencing – Specific Techniques
The most common molecular technique was 16S rRNA
short amplicon sequencing. However, the methods used
were highly variable in sequencing platforms, variable
target regions, and pipelines. Roche 454 (57.8%) sequen-
cing platform was the most commonly utilised of the
four, with Illumina second (31.1%). The use of this plat-
form has increased in recent years. V4 was the most
common variable target region used (22.7%). However,
there were sixteen unique combinations used across the
92 studies. Of the eight pipelines used, QIIME/QIIME2
(Quantitative Insights Into Microbial Ecology) [96] made
up half of the pipelines used, with Mothur [97] a distant
second (20%). The Ribosomal Database Project (46.3%)
was the predominant reference database used, with
SILVA (19.5%) and Greengenes (17.1%) being used in
most of the remaining studies. Techniques specific to
16S rRNA short amplicon sequencing varied greatly,
despite it being the most common method.

Trends Over Time
Many outdated techniques and tools are being aban-
doned for newer, more robust methods. High through-
put molecular techniques have become more commonly
used over time, especially in 16S rRNA amplicon se-
quencing, which was first used in 2004. This upward
trend in 16S rRNA amplicon sequencing is coupled with
a decline in both fingerprinting- and culture-based tech-
niques, with all culture-based studies occurring prior to
2015. There is also a trend towards the use of Illumina
platforms and pipelines that use error modelling within
16S rRNA amplicon sequencing.

Discussion
Techniques for examining the microbiome can be
categorised into two main groups, molecular and non-
molecular. Molecular techniques have become dominant
due to their depth of analysis, speed and cost reduction.
Nevertheless, there are several techniques to choose
from even within molecular methodologies, and within a
given molecular technique there is variation possible in
protocols. This lack of consistency can contribute to the
inconsistencies in results between studies into the pre-
mature microbiome.

Culture Based Approaches
Few studies still rely solely on traditional non-molecular
methods for microbiome characterisation, with the most
recent study occurring in 2014. Non-molecular techniques
are based on traditional microbiological methods that in-
volve growing microbial communities on predetermined

growth media under strict laboratory conditions designed
to optimise growth. Methods vary depending on the type
of micro-organisms present and downstream applications.
Techniques include broth culture, enrichment and micro-
bial identification. Examples of growth media include
Luria Broth, also known as Lysogeny Broth [98], which is
common for the cultivation of Escherichia coli, and select-
ive agars such as blood, MacConkey [99] or Xylose Lysine
Deoxycholate agar [100], which are specific for other taxa
prevalent in the gastrointestinal tract. Microorganisms are
placed in growth medium and left to grow under strict
conditions, giving them time to grow into individual col-
onies. Colony morphology can then be used to determine
specific taxa and colony counts, and are used for the
calculation of concentrations and serial dilutions. These
techniques are primarily used to identify specific microor-
ganisms of interest due to their specificity, and employed
as diagnostic tools for the detection of pathogenic species.
Non-molecular techniques can be useful despite their

limitations in sensitivity and specificity, particularly for
anaerobic species, as well as for discovery and scaling.
They can improve the robustness of results via identifi-
cation of specific species of interest or identification of
unidentified sequences that may belong to a known or-
ganism [101], when used in combination with molecular
techniques, such as 16S rRNA high throughputs sequen-
cing. Other major benefits of non-molecular techniques
include that the materials are inexpensive and that the
protocol requires limited equipment. However, specific
culturing conditions that select for specific microbes, of
which there must be prior knowledge, mean that many
species can go undetected [102, 103]. Moreover, they are
time consuming and labour intensive when performed at
large scale. Thus, traditional culture techniques have
largely been displaced by molecular techniques due to
these time and labour issues, as well as these older tech-
niques’ restricted insight into microbial communities.

Molecular Based Approaches
Molecular techniques, including 16S rRNA high
throughput sequencing, fingerprinting, microarrays and
quantitative PCRs, are rapid, sensitive and highly spe-
cific, particularly for commensal organisms. Molecular
techniques have rapidly replaced non-molecular tech-
niques for use in identifying microbiome composition
since their advent, due to these benefits (Fig. 2). The
utilisation of genetic information to differentiate be-
tween taxa has made a more detailed exploration pos-
sible, and may provide information on the abundance
and composition of these microbial communities beyond
those routinely grown in the laboratory. The most de-
scribed microbiota include bacterial communities, which
can be identified through utilisation of the variable
regions of the 16S ribosomal RNA (16S rRNA) gene,
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which is flanked by highly conserved regions. DNA is
extracted from faeces in this method, commonly using a
commercially derived extraction kit. It is amplified by
PCR and then differentiated into groups based on
similarity to identify the taxa present, allowing deep
community sampling. Samples must first be collected
and stored and the DNA extracted for all 16S and other
molecular techniques.

Sample Collection
Sample collection protocols will vary depending on
study design. However, the timing of collection is an
important factor to consider when comparing results
across studies or during study design. Most studies
provide specific time points, based on the gestational or
post-gestational age of the infants. However, there are
studies that group samples together more broadly, for
example, binning samples together as “early-infancy” or
meconium. Meconium is the earliest stool of a mammalian
infant, comprised of a thick tar-like substance that lines the
intestine of the unborn infant. Typically, meconium is not
released until after birth. However, sometimes it will be re-
leased into the amniotic fluid prior to birth. It can also be
released at different time points post-delivery, typically
within the first three to five days. It may be that accurate
comparisons cannot be made across studies when using
such broad definitions, as the infant microbiome is dy-
namic, with choregraphed abrupt changes in composition
[34, 104]. Therefore, the timing of collection is an import-
ant factor to take into consideration when interpretating
the literature and planning future study design.

Impact of Storage Conditions and Extraction Protocol on
DNA for Molecular Techniques
Sample Storage
Storage conditions influence the stability and constitution
of faecal microbial communities [105], which could preju-
dice study conclusions. Inadequate storage can lead to
continued growth of specific organisms, altering the
proportions of taxa/genera in a sample, and can lead to
DNA/RNA fragmentation. Studies show DNA/RNA frag-
mentation can occur after 24 hours when samples are
stored at room temperature [105], and that significant
changes in bacterial communities can occur in samples
after this time [105–107]. Potentially, changes can occur
in as little as 30 minutes, as demonstrated by Gorzalek,
et al. [108]. Currently, available storage methods include
freezing or refrigeration at different temperatures, and the
use of anaerobic incubation systems, aqueous storage/
transport mediums and faecal occult blood tests.

Freezing and refrigeration
Optimal sample storage conditions depend upon the
duration of storage. If samples are to be processed

immediately, storage on ice for up to 48 hours [109], or
4°C for 24 hours [110] appear to be sufficient for sample
preservation. However, immediate freezing of faecal
samples to inhibit bacterial growth is the optimal pro-
cedure for longer term storage. Long term storage of
faecal samples at -80°C has been shown to yield micro-
biota similar to that of fresh samples [106, 111, 112].
Storage of faecal samples at -20°C also has shown similar
efficacy in sample preservation across several studies
[105, 113, 114]. However, this appears to be time lim-
ited, with some studies reporting changes in taxa over
longer-term storage at -20°C for storage times greater
than a week, resulting in significant changes to Bacter-
oides spp. [115] and for up 53 days in the Firmicutes to
Bacteroidetes ratio [116]. Storage at -80°C produces the
most consistent results and appears to be the most
common preservation method (Fig. 2). It was
common for samples to be stored at -20°C or 4°C
temporarily, or to use non-freeze methods until stor-
age at lower temperatures was possible in situations
where immediate freezing was not possible, such as
with at home collection.

Other storage techniques
Immediate freezing of faecal samples can be logistically
difficult, especially for large-scale population-based stud-
ies, and freeze-thawing effects may significantly diminish
sample integrity. Therefore, other preservation methods
may be better suited for some protocols. These preserva-
tion techniques include chemical and drying preserva-
tion such as DNA/RNA Shield and anaerobic incubation
systems. Preservation buffers, aqueous reagents that sta-
bilise and protect cellular DNA/RNA, like DNA/RNA
Shield (Zymo Research) and RNAlater (Thermofisher),
may also preserve genetic integrity for weeks without
refrigeration or freezing [117–123]. Using these buffers
ensures that samples are also protected from the poten-
tial stress caused by freeze-thawing effects. These buffers
and other non-freeze preservation methods are a good
alternative when freezing is not feasible.
Some potential issues have been highlighted with non-

freezing preservation methods, despite these methods
being a more practical alternative. Preservation buffers
may result in lower diversity [124, 125] relative to imme-
diate freezing. Moreover, some older preservation
buffers may impede downstream DNA extraction and
amplification of target genes [117]. Anaerobic incubation
systems, like Anaerocult®, are only effective for storage
of anaerobic strains and thus have obvious limitations.
Most current research still supports the efficacy of pres-
ervation buffers, despite several studies highlighting their
limitations. Thus, both freezing at -80°C and suspension
in a stabilisation buffer are acceptable practices when
considering all the available storage options.
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DNA Extraction
The first step for molecular analysis is DNA extraction,
which can be carried out using commercially available
kits. Extraction is an important step in molecular tech-
niques, which involves separating DNA from the other
cellular material contained within samples of interest.
The process involves cell lysis, or the disruption of cell
walls, separation of the DNA from the other cell compo-
nents and its subsequent isolation. DNA extraction can
be laborious and carries a high risk of sample contamin-
ation, as a significant amount of handling of the bio-
logical material is involved. Fortunately, there are several
commercially available extraction kits that make the
process less laborious, more streamlined and more re-
producible due to the widespread interest in the human
microbiome.
The amount of tissue needed for DNA extraction and

sequencing is dependent on the extraction methods and
downstream application respectively. Generally, 100 to
1000 nanograms of DNA is required for whole genome
sequencing, and as little as 1 to 10 nanograms for ampli-
con sequencing [126]. The amount of stool required will
be dependent on the efficacy of the protocol in extract-
ing the DNA, which is dependent on the methods used
for the given protocol. The QIAamp DNA Stool Kit, the
most commonly used in the preterm infant microbiome
field, is optimised for 190-220 milligrams of stool, but as
mentioned above, the amount of stool required is kit-
dependent.
Unfortunately, different extraction protocols and kits

can contribute greatly to variation in microbial commu-
nity structure [127, 128], introducing bias to outcomes
[115, 129, 130]. In one study the extraction method was
demonstrated to be the second-greatest contributing fac-
tor to variation [127]. This variation arises in large part
due to different methods of homogenisation and lysis.
These steps are critical, as different stool fractions can
contain different microbial compositions, and different
microbes are lysed better by different techniques.
Microbial cell wall structure differs between Gram-

negative and Gram-positive bacteria and require different
lysis methods for DNA extraction. In Gram-negative bac-
teria, the cell wall is thin and made up of both a peptidogly-
can and phospholipid bilayer containing lipopolysaccharides,
whereas Gram-positive bacteria have a thick peptidoglycan
cell wall. As a result, Gram-positive microbes require more
vigorous lysis methods and Gram-negative microbes are
more easily lysed [115].
Different forms of homogenisation or lysis can, there-

fore, contribute to bias by not effectively disrupting the
cell wall of all microbes present in a sample or, conversely,
by destroying the DNA of easily lysed cells. Mechanical,
chemical, and enzymatic lysis methods can also produce
different proportions of taxa, with mechanical methods

producing higher bacterial numbers and greater diversity
[115]. Two comprehensive studies that explored several
kits, including the QIAamp DNA Stool Kit, found that the
International Human Microbiota Standards (IHMS)
Protocol Q, that includes mechanical lysis, performs best
across several parameters [128, 131]. Despite this, our
review found that the most common extraction method
utilised in premature infant microbiome studies was the
Qiagen QIAamp DNA Stool Kit. This method uses a
combination of heat, chemical and enzymatic lysis, with
some studies adapting the protocol to add mechanical
lysis through bead beating. Unfortunately, different bead-
beating instruments have been shown to produce bias
[128, 132, 133]. Despite this, mechanical disruption is
essential for comprehensive profiling of the human gut
microbiome [133, 134], and until a standardised protocol
is established, researchers must be careful to consider the
bias generated through different kits.

Molecular Techniques
Fingerprinting Methods
The increasing usage of 16S rRNA amplicon sequencing
has been matched with a reduction in the use of other
techniques, like different fingerprinting methods. Finger-
printing methods are more cost effective and faster to
perform [135], although high throughput sequencing
techniques provide a broad detailed analysis of microbial
communities. These techniques are favoured in compari-
son to traditional culture methods, as they provide
greater sensitivity and specificity for individual organ-
isms, and can be used to analyse large numbers of sam-
ples [135]. Broadly speaking, fingerprinting methods
provide a profile of microbial communities that uses
amplification of a target gene (commonly the 16S rRNA
gene) and the utilisation of gel electrophoresis to observe
physical separation of amplicons, allowing exploration of
highly abundant taxa. Fingerprinting methods have been
used in studies exploring the preterm microbiome
(18.5%), although they are currently less common. These
techniques include denaturing/temperature gradient gel
electrophoresis (D/TGGE) and terminal restriction frag-
ment length polymorphism (TRFLP), as well as denatur-
ing high performance liquid chromatography (dHPLC)
in a single study. dHPLC uses liquid chromatography to
identify polymorphisms [136], while the others rely on
electrophoresis to differentiate between sequences, al-
though all are considered fingerprinting methods.

Denaturing/temperature gradient gel electrophoresis
Gradient electrophoresis is the size dependent move-
ment and separation of dispersed nucleic acids through
an acrylamide gel. As DNA has a negative charge, it
moves through the acrylamide gel or molecular mesh to-
wards the positive electrodes at a rate that is inversely
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proportional to the size of the nucleic acid sequences,
thus allowing the differentiation of different sized se-
quences [137]. More detailed exploration is achieved by
applying either a temperature (TGGE) or chemical gra-
dient (DGGE) to denature the samples as they move
across acrylamide gel, based on the chemical make-up of
the sequences [138, 139].
Both DGGE and TGGE differ in the mechanism of

DNA denaturation. In DGGE the nucleic acids are
exposed to increasingly extreme chemical conditions,
leading to the denaturation of the DNA in a stepwise
process. This allows for visualisation of the sequence dif-
ferences by their position on the gel. The method relies
on differences in the ability to denature the bases, which
is determined by base pair sequences to separate genes
by size. In contrast, TGGE uses a temperature gradient
in combination with the electrophoresis. Strands separate
across the gel depending on base-pair content, with smaller
molecules travelling faster [139] as the temperature
increases.

Terminal restriction fragment length polymorphism (TRFLP)
TRFLP also uses electrophoresis to differentiate between
sequences based on terminal restriction fragment size,
like TGGE and DGGE. This allows sequence identifica-
tion for microbial community profiling [140]. The
method involves PCR amplification of a target gene with
fluorescently labelled primers and subsequent digestion
with restriction enzymes. The sizes of the different ter-
minal fragments are then determined by separating the
fluorescently tagged terminal fragments via capillary or
polyacrylamide electrophoresis in a sequencing gel, cre-
ating unique banding patterns allowing identification of
microorganisms [141]. T-RFLP has high throughput cap-
ability and can be highly sensitive, but it also has limited
accuracy as incomplete or non-specific digestion can
lead to overestimation of diversity. Homology of se-
quences can contribute to an underestimation of taxa
present [142]. Furthermore, libraries must be built prior
to analysis.

dHPLC
dHPLC uses liquid chromatography to identify DNA
polymorphisms [143], unlike TGGE, DGGE and T-
RFLP. DNA strands are separated into hetero- and
homoduplexes using an ion-pair, reverse-phase liquid
chromatography on a poly alkyl column matrix [143].,
following partial heat denaturation. The presence of
polymorphisms is revealed by the differential retention
of these homo- and heteroduplex DNA fragments [144].
Heteroduplexes are double stranded DNA that have
formed during PCR amplification that are mismatched
at the site of mutation. Mismatched double stranded
DNA fragments have reduced retention on the column

matrix, and subsequently in a reduced retention time,
thus allowing for identification of polymorphisms. As a
result, dHPLC can be useful as a screening test for mu-
tations that may be involved in diseases or associated
with antibiotic resistance [136, 145]. The method has
also been used to differentiate between taxa at species
depth by applying the same underlying principle of
scanning for mutations to the detection of sequence
variations between PCR-amplified bacterial 16S rRNA
genes [146], and also as a tool for re-sequencing of
genomes [144].

Limitations (Pros and Cons)
Some consider dHPLC to be the optimal fingerprinting
method [70], potentially allowing identification of bac-
teria at the species and/or biotype levels [146]. However,
these techniques require extensive downstream process-
ing, can produce PCR bias [102, 147] and have limited
detection depth, as it is difficult to relate banding pat-
terns created in gels to species or lineages created by fin-
gerprinting methods [135]. Thus, fingerprinting methods
are usually limited to identification at the order/family
level [148], and to only the most abundant organisms.
This methodology also makes it difficult to combine data
from multiple studies into a single analysis [135]. Finger-
printing techniques can be useful for exploring domin-
ant members of microbial communities, including
clustering of communities based on dominant members
[149]. However, their application is limited in describing
entire microbial communities.

Phylogenetic Microarrays
Microarrays were originally developed to monitor gene
expression, but their application has been expanded to
include comparative genomics, DNA sequencing ana-
lysis, single-nucleotide polymorphism (SNP) analysis and
microbial detection [150], including studies on the pre-
mature infant microbiome [77, 78]. Microarrays are
microscopic slides printed with probes made of prede-
fined oligonucleotide sequences complementary to the
small subunit (SSU) rRNA. The oligonucleotide probes
detect gene expression or mRNA transcripts expressed
by specific genes and extracted from target organisms.
Reverse transcriptase converts mRNA into complemen-
tary DNA (cDNA), and this cDNA is fragmented and
fluorescently labelled and added to the microarray [151].
cDNA then binds complementary oligonucleotide
probes via hybridisation, and measurement of the ob-
served fluorescent intensity at a given probe is an indica-
tion of the abundance of predetermined sequences that
are chosen prior to analysis and are of interest [151].
This makes phylogenetic oligonucleotide arrays (phy-
loarrays), including HITChip, suited to the analysis of
microbial communities.
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HITChip is an ecosystem-specific phylogenetic micro-
array developed for microbial detection in the human
gastrointestinal tract [152, 153], and is the only micro-
array to be used in studies on the premature infant gut
microbiota. HITChip is an oligonucleotide microarray
that uses 4,800 oligonucleotide probes based on two hy-
pervariable regions (V1 and V6) of the 16S rRNA gene,
identifying 1,140 phylotypes. Phylotypes were designed
following the analysis of 16,000 human gastrointestinal
tract 16S rRNA gene sequences [153]. As a result,
HITChip is highly specific to the human gastro-
intestinal tract microbiome and provides a high level of
diversity.

Limitations (Pros and Cons)
Benefits of microarrays include ease of use, speed and
cost [154], and potential for investigating microbial gene
functionality [155]. These intermediate methodologies
allow processing of large sample sizes, while providing
more taxonomic depth, like fingerprinting methods.
Microarrays target the ribosomal RNA gene, allowing
comparisons of diversity and taxonomy, and thus display
similar robustness [156, 157], like 16S rRNA sequencing.
However, when compared to high throughput tech-
niques, phylogenetic arrays are limited when assessing
new lineages, as they can only detect predefined taxa
[135, 158]. Other methodologies are better suited when
there is potential for taxonomic or gene discovery, as
microarrays are limited to predefined taxa. Microarrays
are not commonly used in studies on the premature in-
fant gut microbiome, as it is a relatively new area of
study, and other methodologies may be better suited for
characterising this niche.

qPCR and Fluorescent In-situ hybridization
Polymerase chain reaction (PCR) is a highly sensitive
molecular technique that was originally developed for
detection of DNA/RNA sequences, but has since
progressed beyond purely nucleic acid detection. Quan-
titative polymerase chain reaction (qPCR) builds on
standard PCR by providing the quantity of amplified
genes. qPCR also differs from standard methods as it
monitors the amplification of targeted DNA molecules
in real time or during PCR instead of at the end. This
process allows not only detection, but also quantification
and characterisation of nucleic acids [159]. Fluorescent
dye is added to the PCR reaction in dye-based qPCR,
and the fluorescent signal increases proportionately to
the quantity of DNA being replicated. This allows quan-
tification of DNA after each cycle. However, qPCR only
allows one target to be examined at a time, thus
throughput is limited. The more accurate probe-based
qPCR provides one way around this drawback, by simul-
taneously examining multiple targets via recognition of

sequence-specific probes. The fluorescent signal from
the probe in probe-based qPCR is proportional to the
target sequence that is present in the reaction [160], as it
is in dye-based qPCR.
Fluorescent in situ hybridisation (FISH) is another

probe-based technique. FISH is a molecular technique
that uses complimentary binding to identify or quantify
cDNA that can be used for microbial identification, like
microarrays and qPCR [161]. FISH uses fluorescently la-
belled DNA probes that match specific DNA sequences
that can be observed under a microscope, allowing direct
quantification of specific taxa. Fluorescent oligonucleo-
tide probes are created for targets, either 16S or 23S
rRNA sequences. The target and probe sequences are
denatured with heat or chemicals, and mixed together
prior to hybridisation. Hybridisation then occurs be-
tween complementary target and probe sequences, with
fluorescence microscopy facilitating detection of hybrid-
isation via observations of fluorescently labelled cDNA.
This target-specific methodology facilitates high accur-
acy when targeting specific microbes.

Limitations (Pros and Cons)
Both qPCR and in-situ hybridisation can provide highly
accurate quantification [162], can be highly sensitive
[163], and can produce similar results to metagenomic
methods when considering the main intestinal microbial
groups [24]. However, they are limited in their applica-
tion, as prior knowledge of sequences is required, like
fingerprinting and microarrays. Thus, these methods
have no discovery power and no capacity for assessing
diversity. FISH has been designed to examine the major
microbial groups present in premature infants, but is
based on groups present in full-term infants [79, 80].
However, predefining taxa in this way is a significant
limitation, as premature infants are known to have sig-
nificantly different microbial populations to infants born
full-term [24, 26]. Moreover, both qPCR and FISH are
not scalable, and therefore are only effective for low tar-
get numbers. qPCR or in-situ hybridisation methods
may be beneficial when specific populations are being
targeted, as they have limited bias and are cheaper com-
pared to sequencing methods, but they are not suitable
for projects mapping entire microbial ecosystems, like
that of the premature infant gut microbiome.

Sequencing Techniques
DNA sequencing is the process of nucleic acid sequence
determination, and covers a broad range of techniques
across three generations of sequencing. The first gener-
ation of sequencing began with a low throughput tech-
nique, Sanger sequencing, which only sequenced a single
DNA fragment at a time [164]. Sanger uses a labour-
intensive cell-based amplification step, involving cloned
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sequences being placed into plasmids for amplification,
prior to extraction and purification [164]. The second
generation of sequencing techniques, often referred to as
next-generation sequencing (NGS) or high-throughput
sequencing (HTS), involved 16S rRNA Metabarcoding
and Metagenomics (shotgun sequencing). NGS refers to
any sequencing method using the concept of parallel
processing. This parallel processing increased the vol-
ume of reads per run to millions, vastly improving effi-
ciency, as did the development of a cell-free system.
NGS also runs elongation and detection steps in parallel,
again improving efficiency [165]. However, NGS tech-
nologies are limited in that they use short reads (bp),
which create a computational challenge when assem-
bling or mapping to genomes. A third generation of
sequencing was developed to overcome this challenge,
long read or single molecule direct sequencing. The
capacity of all sequencing technologies to produce large
volumes of relatively accurate data, coupled with the
continual reduction in cost, has led to their adoption
across most modern studies investigating microbial
populations. 16S rRNA high-throughput amplicon
sequencing (metabarcoding) is now the most common
method used for studies specifically characterising the
preterm infant’s gut microbiome (Fig. 2). However, other
methods, including shotgun metagenomics, and third
generation single molecule direct (long-read sequen-
cing), have also been applied. All techniques described
have their strengths and limitations.

Next Generation Sequencing
16S rRNA amplicon sequencing
16S rRNA amplicon sequencing, or metabarcoding, has
become the most common technique for characterisa-
tion of the preterm infant microbiome since it was first
used in 2004. 16S rRNA metabarcoding uses high
throughput sequencing to target variable regions of the
16S rRNA gene, allowing accurate identification of
microbial community composition [166–168]. The 16S
rRNA gene codes for 16S ribosomal RNA, a component
of the 30S small subunit of prokaryotic ribosomes. The
16S rRNA gene is highly conserved across taxa, but also
has several variable regions allowing differentiation be-
tween taxa, due to a slow rate of evolution. The variable
regions are conserved enough that most taxa can be
characterised, but variable enough that taxa can be dif-
ferentiated. There are nine of these hypervariable regions
that range in base pair length and are involved in the
secondary structure of the small ribosomal subunit. The
regions vary in conservation, and thus different regions
correlate with different levels of taxonomic resolution.
The protocol for 16S rRNA gene amplicon sequencing
involves DNA extraction, PCR amplification of the vari-
able target region(s), grouping of sequences into OTUs,

ASVs or an equivalent, and then mapping these se-
quence variants to a reference database for taxonomic
identification.
16S rRNA metabarcoding is the most common tech-

nique for characterising the preterm infant. However,
despite this there is no predominant protocol. There are
a myriad of options at all stages of the workflow, all of
which can introduce bias that alters outputs, which is
supported by the observation that samples cluster by
study [15]. Technical differences in how samples are col-
lected and stored, how DNA is extracted, the primers
that are selected and variable regions targeted, the se-
quencing platform, bioinformatic pipelines and reference
databases could all produce systemic bias that obscures
biological differences [15, 16]. As the 16S rRNA protocol
is the most common technique for characterising the
preterm infant gut microbiome, a more detailed explan-
ation of its varied protocols is discussed below. Caution
should be used during both interpretation of the litera-
ture and study design until a standardised protocol is
agreed upon.

Selection of Variable Regions and Primer Bias
Once DNA is extracted, and prior to sequencing, the
target DNA from the variable region of interest must be
amplified via PCR. However, there is much debate on
which variable sub-region to target and matching
primers to use. Indexing primers are complementary
base pair sequences that are required to ‘select’ and
amplify variable sub-regions. These 16S rRNA variable
sub-regions can vary by up to 40% in taxa between sam-
ples analysed with the same pipeline [169], and it has
been argued that the most critical step for accurate
amplicon analysis is the choice of primers [170], as pri-
mer selection can alter coverage [171].
Samples with the same extraction and storage proto-

cols have been demonstrated to cluster by primer selec-
tion [15]. This is because poor primer selection can
influence quantitative abundances [172], and contribute
to under-representation or over-representation of taxa
[173, 174] or selection against particular taxa [135, 175,
176]. For example, most primers may inadequately de-
tect Bifidobacterium [177], possibly over-exaggerating
the low levels already observed in preterm infants. For
identifying species, targeting of these hypervariable sub-
regions is limiting, as different sub-regions show bias in
the taxa that they can identify due to limited variability
within the sub-region itself. Thus, while V1-V3 may be
good for Escherichia and Shigella species, Klebsiella will
require V3-V5, and Clostridium and Staphylococcus re-
quire V6-V9 sequencing [178]. As a result, studies that
target hypervariable sub-regions must settle for taxo-
nomic resolution at the genus level. Thus, the only way
to ensure good taxonomic identification would be to
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sequence the entire 16S gene, given these limitations
and the bias that can be introduced through variable re-
gion and primer selection. However, high error rates and
cost are still major deterrents.
Arguments have been made for targeting the V4-V6

[179], V4 [172, 179, 180], and V3-V4 [169, 171, 181]
sub-regions, with V4 being the most common for
characterising the microbiome of preterm infants, when
targeting hypervariable sub-regions for high throughput
sequencing (Fig. 2). The Earth Microbiome Project [182]
recommends the V4 sub-region, and it has been demon-
strated to have low PCR and sequencing errors due to
complete overlap of paired end sequences [180]. Other
work has also shown that the phylogenetic relationships
based on V4 were closest to that entire 16S rRNA gene
[179]. However, some evidence suggests that targeting
the V4 region may not be as accurate as previously
thought [178]. The debate about which region is best is
ongoing, but research conducted by Almeida et al.
makes a convincing argument for the use of the V3-V4
region above all else. It compared variable regions across
different combinations of pipelines and reference data-
bases for both mock communities and simulations [169],
and found the V3-V4 region consistently produced the
most reliable taxonomic inferences. Taken together, the
frequent use of V4 and the findings across studies, tar-
geting either the V4 or V3-V4 sub regions may be best
practice until standardisation occurs. Additionally, con-
sideration should be given when making comparisons
across studies that use different variable regions.

NGS Platform
Several sequencing platforms are available for 16S rRNA
short read amplicon sequencing, with Illumina MiSeq,
Roche 454 (originally 454 Life Sciences) and Thermo
Fisher’s Ion Torrent Personal Genome Machine (PGM)
all being used in the context of the premature infant
microbiome. Roche 454 has historically been the domin-
ant platform, as NGS technologies began with it. How-
ever, Illumina now dominates the market, with its
consistent growth and the eventual abandonment of the
Roche 454 sequencing platform in 2016. It is important
to understand the differing methods across platforms,
and their limitations and biases for accurate interpret-
ation of the literature, although most modern sequen-
cing technologies will opt for Illumina sequencing.
Illumina sequencing technology facilitates massively

parallel sequencing by using optical signals to detect
base pairs in real time. DNA libraries, containing frag-
ments that vary between 100-150bp, are loaded onto a
flow cell and placed in the sequencer for this process.
The sequences bind to the flow cell via complementary
adaptors. A process called clonal bridge amplification or
cluster generation then amplifies each read, creating a

spot (cluster) on the flow cell (slide) with thousands of
copies of the same DNA strand. Then, through a process
coined sequencing by synthesis, fluorescently tagged nu-
cleotides bind to the complementary bases on the DNA
strand via repeated cycles of single-base extension. A
fluorescent signal (the colour of which is dependent on
the base) is emitted upon incorporation of each nucleo-
tide, and a picture taken, indicating what nucleotide was
added. Once the forward DNA strand is read, the reads
are washed away, and the process is repeated for the re-
verse strand. Computers then construct the sequence by
detecting the base at each site in each image.
Roche 454 relies on the production of sequence clus-

ters, like Illumina, but through a process called clonal
emulsion PCR (emPCR). In emPCR, single stranded
DNA fragments (up to 1kb) from a DNA library are at-
tached to the surface of a bead, rather than a slide, with
one bead for each DNA fragment. The reads bind to the
bead via complementary adaptors. The beads are then
compartmentalised into single wells containing emulsi-
fied oil, and are subjected to thermal cycling to achieve
clonal amplification. This process produces many copies
of the original template, as in Illumina’s clonal bridge
amplification. The slide containing the wells is then
flooded with one of the four nucleoside triphosphates
(NTP) that bind to their complements, releasing a light
signal upon addition. The original NTP mix is washed
away and the next NTP is added and the cycle is re-
peated. The light intensities are then plotted on a graph
for each sequence read, with graphs then used to deter-
mine the sequence computationally.
Ion Torrents PGM also uses clonal-emPCR, but differs

from Roche 454 both in how it determines the nucleo-
tide sequences and the size of DNA fragments. Ion Tor-
rents PGM or proton sequencing uses DNA fragments
of ~200bp, which are again bound to beads via adaptors.
These then undergo PCR and are washed with different
NTPs. It then exploits the release of hydrogen ions,
which occurs through the addition of an NTP to a DNA
polymer for nucleotide sequence determination. The re-
lease of hydrogen ions causes changes in pH that are
used to determine the DNA sequences.

Limitations (Pros and Cons)
No platform is without its limitations: limitations that
can contribute to platform-associated biases and study-
based clustering [15], despite significant developments in
the sequencing field. For example, Roche can have high
sequencing error rates associated with A and T bases
[183], high error rates in homopolymer regions resulting
from accumulated variance in light intensity [184–186],
and can have up to 15% of sequences resulting from arti-
ficial amplification [187]. Ion Torrent is also subject to
high homopolymer error rates [186, 188, 189], as well as
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organism-specific read truncation, due to the similar
methods of Roche and Ion Torrent, in which multiple
nucleotides can be incorporated during a single cycle
[190]. Illumina still have their own systematic base-
calling biases [191], even though platforms produce
comparatively lower error rates [186]. These include
production of homopolymer-associated sequencing
errors [183], different quality reads across different
sequencing tiles [192], increased single-base errors asso-
ciated with GGC motifs [193] and different sequencing
error rates at the different read ends [194]. In the two
dominant platforms in preterm infant studies Roche 454
and Illumina, the differences caused by platform are
minor [172, 183]. However, the lower error rates, higher
throughput [186] and higher read quality [190] achieved
by Illumina, results in higher quality data. This allows
stringent quality control parameters, resulting in more
reliable outputs for downstream analyses [172].

Bioinformatics and Reference Databases
Bioinformatics is an interdisciplinary field of science that
combines biology, computer science and statistics, in
order to process large amounts of biological data, such
as that produced by 16S rRNA gene amplicon sequen-
cing. Bioinformatic tools like QIIME [195] and Mothur
[97] are required to clean up and make inferences on
microbial composition from data that is not human-
readable post sequencing and prior to downstream
analysis. Bioinformatic tools or pipelines need to be both
precise and reliable in order to produce accurate bio-
logical conclusions using the vast amounts of genetic
data that is being produced with sequencing. These tools
convert raw data into interpretable taxonomic abun-
dances by comparing sequencing reads in the form of
OTUs, ASVs or an equivalent (sequence variants that
represent a true sequence) [196] to a defined reference
database, identifying the taxa present in samples by
assigning the most likely taxonomic lineages. The
accuracy of the taxonomy classifications produced is
then reliant on both the diversity and breadth of anno-
tated sequences in the reference databases [169], as well
as the accuracy of the ever improving algorithms used
by bioinformatic pipelines.
There is no agreement on optimal practices, although

the bioinformatic pipelines are rapidly changing and im-
proving, and many researchers are unaware of the biases
associated with using different tools. Combinations of
different software packages, databases and targeted re-
gions can produce vastly different levels of accuracy
when examining mock communities and running simu-
lations [169]. When comparing several bioinformatic
tools: QIIME, QIIME 2, Mothur and MAPseq [197],
Almeida et al. found that QIIME 2 was the optimal tool
in regards to detection sensitivity and composition

prediction. QIIME 2 had the largest proportion of classi-
fied sequences at the most accurate relative abundances
[169]. However, MAPseq was more precise, with fewer
genera being miss-assigned. A more recent study which
compared the most popular current bioinformatic pipe-
lines for 16S rRNA gene amplicon sequencing, found
that DADA2 was the best choice for studies requiring
the highest possible biological resolution, but that
USEARCH-UNOISE3 [198] had the best overall per-
formance [199]. The common theme running through
USEARCH-UNOISE3, DADA2 and QIIME 2 (uses
DADA2/deblur plugins) is their denoising or clustering
algorithm.
Denoising and clustering are methods for correcting

sequencing errors through grouping of similar sequence
variants into a bin. This was originally done through
OTU clustering, in which sequences are clustered based
on a 97% similarity threshold. However, there are several
methods for implementing this threshold: closed-
reference, open-reference and de novo clustering [200].
The de-novo method clusters reads against one another,
based on the threshold, without a reference database,
unlike the reference-based approaches. In contrast, the
closed-reference method clusters reads against a data-
base and excludes those sequences that do not align.
Open-reference clustering also clusters against a data-
base, but then clusters reads that do not align de novo.
The most successful method is debatable [200, 201], but
may be dependent on the study design. Nonetheless, the
quest for more reliable data has seen a shift away from
OTU-clustering towards error modelling, which takes
into account both abundance and error.
Denoisers, as seen in DADA2 [202] and deblur [203],

generate error models learnt from the reads and use
these models for sequence variant assignment with
either ASVs (DADA2) or subOTUs (deblur). The error
modelling approach allows for clustering down to the
level of single-nucleotide differences in the sequence re-
gion, improving resolution, and allows consistently re-
producible labels with intrinsic biological meaning [196].
These improvements allow researchers to distinguish be-
tween true sequences and those generated during PCR
amplification and sequences, and result in comparable
general community structure across different tools.
However, some variability still exists, with differences in
the number sequence variant produced and resulting
alpha diversity [204], despite these improvements. These
differences should be considered when making cross-
study comparisons and during study design.
The most common bioinformatic pipeline for studies

exploring the preterm infant gut microbiome is QIIME.
QIIME’s use of OTU clustering and its production of a
large number of spurious OTUs and inflated alpha di-
versity [199] should be taken into account when
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considering older literature. However, QIIME was suc-
ceeded by QIIME2 in 2018 (first published in 2019) [96],
which uses an updated error modelling approach, with
either DADA2 or deblur plugins. Most studies on the
preterm infant microbiome predate the release of QIIM
E2, and therefore will have used the older version. It is
unclear if newer studies will make the transition, due to
the limited number of papers released since the pipe-
line’s publication. However, in order to produce more
robust data, research in this field needs to move towards
these new and improved methods.
Along with choosing the best bioinformatics tool, the

reference database used is also an important consider-
ation. Pipelines can use a homology based or Bayesian
approach to match sequence variants to sequences from
the reference databases. This was originally achieved
with a similarity threshold of >95% sequence match be-
ing considered to represent the same genus and >97%
match for species level identification [205]. However, re-
cent work suggests that these thresholds are too low for
accurate assignment [206]. The reference databases con-
tain FASTA files with reference sequences assigned to
nodes of taxonomy. However, discrepancies exist in both
nomenclature and lineages of taxonomy between data-
bases [206, 207], which has obvious implications for the
taxa identified in a sample. The Ribosomal Database
Project (RDP) is the database used most often for studies
on the preterm infant microbiome. SILVA may have bet-
ter recall and be more precise than the more commonly
used RDP (Fig. 2), when examining the human micro-
biome, based on a benchmarking paper by Almeida et al.
[169]. However, more research on best practices, along
with standardisation across databases is needed.

Bioinformatics – Contamination
Contamination is another way variability between stud-
ies can be introduced. DNA contamination from collec-
tion, extraction and sequencing protocols (and kits) can
impact upon the interpretation of results [208, 209].
Many of these contaminants could be considered normal
inhabitants of the human gastro-intestinal tract, and so
it is important that measures are taken to mitigate the
risk of contamination, and that steps are taken to ac-
count for or remove this contamination. Negative con-
trols, spike-in controls and microbial standards, when
coupled with appropriate bioinformatic tools, are effect-
ive ways to account for both accuracy of techniques and
contamination. Bioinformatic tools like microdecon
[210] can be used to remove homogenous contamin-
ation. This is important for both study design and
interpretation of the literature, as contamination may
produce unusual or novel findings if the appropriate
mitigation strategies are not in place [208].

Descriptive metrics
Analysing microbial data can provide a significant
challenge due to the volume and complexity of the data.
Additionally, it is difficult to provide a best practice ap-
proach for statistical analysis of microbiome data, as it is
highly dependent on the hypotheses and objectives of
the study. However, generally, there are three main
metrics that are considered in microbial analysis: alpha
diversity, beta diversity and differential abundance.
Unfortunately, finding a meaningful way to conduct
these analyses can be a convoluted process.
Alpha diversity refers to the diversity within a sample,

summarising the ecological structure with respect to
either richness (number of taxonomic groups), evenness
(distribution of abundances of the groups), or a combin-
ation of the two [211]. Alpha diversity can be repre-
sented by richness, the Chao 1 index, the Shannon-
Weiner index, the Simpson index, Pielou’s evenness or
Faith’s phylogenetic diversity. All these indices differ in
what they represent, with richness and the Shannon-
Weiner index common in the context of microbiome
research. Richness is simply referring to the count of
sequence variants, whereas the Shannon-Weiner index
takes both richness and evenness into account. The
Chao 1 index is a bias-corrected richness estimate [212]
that has become less common with the advent of newer
pipelines (e.g. DADA2), due to their handling of single-
tons, which is based on the assumption that many are
spurious sequencing variants.
Beta diversity refers to microbial differences between

samples or groups. There are several metrics for beta di-
versity that represent distances between samples, as
there are in alpha diversity. Beta diversity metrics in-
clude the Jaccard distance, Bray-Curtis distances and
UniFrac. Jaccard distance is the number of sequence var-
iants shared by samples divided by the number shared.
Bray-Curtis distances, one of the most widely used in
microbiome research, builds on this by taking abun-
dances into account as well, whereas UniFrac distances,
either weighted or unweighted, represent the differences
between samples based on phylogenetic differences.
These distance matrices can all be represented with dir-
ect comparisons of distances between samples or groups,
hierarchical clustering or ordination techniques. Ordin-
ation is the most common as it reduces the complex
distance data to a 2D or 3D plot, making for easy
interpretation.
Alpha and beta diversity, along with differential abun-

dance, all require normalisation prior to analysis. Differ-
ential abundance is simply making comparisons for
taxonomic abundance between samples or metadata.
However, the process is more complicated than simply
counting the number of reads per sample. This is
because using read counts as a measure of abundance is
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flawed, as the number of reads is actually an artefact of
sequencing, and is therefore not a good representation
of abundance [213]. Alpha and beta diversity also take
read counts into account, and so both are also sensitive
to sequencing depth. Both diversity metrics require an
equal number of reads per sample for valid analysis. This
means that if appropriate measures are not taken, library
sizes can determine diversity results [214]. Thus, reads
must be normalized to account for the differing number
of reads per a sample prior to analysis. However, al-
though normalisation is the solution, different methods
are required for different analyses.
Older methods of normalisation include Total Sum

Scaling/Normalisation (TSS) and rarefying. In TSS, data
is transformed to proportions by dividing the reads for
each sequence variant by the total number of reads,
whereas rarefying adjusts for differences in library sizes
by assigning a sequencing depth threshold, and subse-
quently subsampling samples with a depth above the
threshold and discarding those below. However, both
methods are poor options for differential abundance
testing and can have high type 1 errors [215–218]. Add-
itionally, TSS doesn’t account for heteroskedasticity [17]
and rarefying discards potentially useful data. As a result,
other modern methods have begun to replace the old
methods.
Newer methods include variance stabilizing transform-

ation with DESeq2 [219], upper quantile normalisation
[215], CSS normalisation [220] and Trimmed Means of
M-values (TMM) with EdgeR [221]. Methods like DESeq2
and EdgeR are generally favoured due to their perform-
ance across several comparative papers [215–217]. How-
ever, these comparisons are specific to standardisation of
within-sample variance, the ability of data to cluster in or-
dinations, and their performance in differential abundance
testing, but there are several important limitations [222].
These methods tend to focus on standardising within-
sample variance across samples, as they were created for
differential abundance testing. As a result, the newer
methods do not guarantee equal number of reads across
samples. They supress species evenness and overestimate
the importance of low abundance taxa (through log trans-
formations) [222]. The overestimation of low abundance
taxa and suppression of evenness can contribute to an in-
accurate representation of the community, and, along with
non-equal read counts, can lead to inaccurate compari-
sons between samples.
So, although proportions, specifically TSS and rarefy-

ing, are not suitable for differential abundance testing,
they are more suitable for diversity analysis, as they give
a more accurate representation of the microbial commu-
nities while accounting for differences in read depths
[218, 222]. Additionally, methods like the variance
stabilising transformation with DESeq2 are favoured for

differential abundance testing. It is critical that re-
searchers are aware of the strengths and limitations of
normalisation methods for accurate interpretation and
robust study design and differences between the subse-
quent analyses.

Metagenomic Shotgun Sequencing (whole genome
sequencing)
Shotgun metagenomics is another NGS approach that
has been used a handful of times for characterising the
gut microbiome of premature infants. Shotgun metage-
nomic sequencing targets all DNA in a sample, in con-
trast to 16S rRNA sequencing, which targets a specific
region/gene. The protocols differ from 16S rRNA
sequencing slightly, although they use the same sequen-
cing technology. Shotgun metagenomics does not re-
quire amplification, as there is no target region/gene,
but it does require the removal of host DNA prior to
mapping, as all extracted DNA in a sample is sequenced.
This alternative NGS method provides greater taxo-
nomic resolution and gene annotation, allowing more
comprehensive analyses. As a result, studies using this
technology are typically looking to link functional gene
profiles or pathogen strains to disease.

Limitations (Pros and Cons)
Shotgun sequencing has its limitations, despite its obvi-
ous benefits. There are numerous experimental and
computational approaches that can be carried out at
each step, as in 16S rRNA sequencing [223]. DNA ex-
traction methods have been shown to affect composition
[224], due to kits and reagents containing microbes
[225] and differences in lysis techniques [226]. Library
preparation and sequencing can introduce errors
through PCR amplification [223] and selection of plat-
forms [227, 228]. Furthermore, specifically metagenome
profiling can cause protocol-associated variability, having
several options for bioinformatics, as all metagenomic
profiling techniques have their own limitations [223].
There are two approaches for metagenome-profiling:

assembly-free methods and assembly-based methods.
Assembly-free methods, also known as read-based pro-
filing or ‘mapping’, make comparisons to reference data-
bases that contain whole genomes, such as Kraken [229]
or Centrifuge [230], or to selected marker genes, such as
mOTU [231]. Alternatively, assembly-based analysis uses
assemblers like Meta-IDBA [232] and SOAPdenonovo2
[233] to reconstruct genomes de novo. Assembly-based
methods can construct multiple whole genomes and re-
solve novel organisms, but can be a significant computa-
tional burden and are limited in assessing complex
communities. Alternatively, read-based analysis is com-
putationally efficient and can deal with more complex
communities, assuming there are enough sequencing
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depth and genomes in the reference database. However,
identification is limited to those microbes previously de-
fined, and so community structure/function is limited.
Both approaches have their strengths and weaknesses,
and which is best may depend on the question being
asked.
There are also pros and cons when comparing NGS

shotgun approaches to other sequencing methods. Meta-
genomics has more reliable species identification and
broader analyses potential relative to metabarcoding, but
the bioinformatics is more involved, requiring more
time, skill and computational power, and the sequencing
is more expensive, as entire genomes are being
sequenced instead of a single gene. As a result, older
studies using shotgun approaches tend to have lower
sample sizes [2] or only use the technique on a subset of
the cohort [74]. Additionally, where fragments of bacter-
ial genomes are mixed in with contamination from host
species and other organisms, 16S rRNA amplicon se-
quencing has specificity for bacteria, does not require
full reference genomes, and does not require large quan-
tities of, nor high quality, DNA [234, 235], as opposed to
shotgun sequencing. However, the adoption of this tech-
nique will likely become more widespread as the price of
shotgun metagenomic sequencing continues to drop, in
combination with improved computational methods.
However, 16S rRNA amplicon sequencing targeting vari-
able regions continues to dominate studies in this field
at the present time.

Third Generation Sequencing
Long read sequencing is another sequencing approach.
Full length sequencing of the 16S gene was made pos-
sible with the advent of third generation sequencing
technology, also known as long-read sequencing. This
approach is possible with platforms like Oxford Nano-
pore Technologies Minion [236] and techniques like Pac
Bio’s Circular Consensus and Continuous Long Read
Sequencing [237]. These technologies allow discrimin-
ation between millions of reads that may only differ by a
single nucleotide [178], and have the capacity to produce
reads in excess of 10,000 base pairs (bp) [238, 239]. This
allows the sequencing of the entire 1,500 bp 16S gene
and increases the resolution in taxonomic profiling to
species and strain level.
Third generation sequencing can produce these long

reads because their design is distinct from previous
sequencing methods. Nanopore technology produces
long sequences by passing a single DNA molecule
through a DNA pore, measuring changes in current
across a membrane. The current passing through the
membrane is dictated by the size of the base pairs in the
sequence that is passed through the pore. Alternatively,
PacBio’s SMRT (Single Molecule, Real-Time) sequencing

repeatedly passes a DNA molecule through a DNA poly-
merase attached to a well, with short sequences being
read until there are enough overlapping reads to identify
the entire sequence.
Long-read technologies can also be applied to whole

genome sequencing (WGS) and shotgun metagenomics,
as well as full length sequencing of the 16S rRNA gene.
WGS or shotgun metagenomic approaches allow greater
sequencing depth, meaning species level detection of the
preterm microbiome can be achieved, like sequencing
the entire 16S gene. This capacity was demonstrated by
Legget et al., who took advantage of Oxford Nanopore’s
ability to produce near-real time data in developing a
metagenomic screening platform for preterm infant
microbiome samples [94]. Moreover, as shotgun metage-
nomic sequencing targets all genomic DNA in a sample,
the data can be used for other analyses, like functional
profiling and antibiotic resistance gene profiling. This
provides a comprehensive investigation of microbial
ecology.

Limitations (Pros and Cons)
The long reads produced from the two technologies are
their major advantages. Nanopore can produce reads
generally ranging from 10Kbp to 1Mbp, with the longest
sequence produced being >2Mbp [240]. These longer
reads, along with advances in the associated computa-
tional methods, allow for greater sequencing depth than
short-read technologies, with potential for greater accur-
acy [241], as they can distinguish between sequencing
artifacts and actual biological sequences [178]. However,
high error rates [242–244] are still a problem in TGS,
despite the claim of high accuracy. For Oxford Nano-
pore, this high error rate comes from using changes in
current to identify base pairs [245]. In PacBio’s Single
Molecule, Real-Time sequencing no current technology
can precisely capture the rate of information produced
(DNA polymerase adds 100bp/s), , which is one reason
why the DNA must be passed through the enzyme mul-
tiple times to overcome this issue. So, although these
technologies show promise, the high error rates and cost
are still deterrents, which is probably why they have
been used so seldom in studies on the preterm infant
microbiome.

Conclusions
Variability of results will continue to be a limitation
when investigating microbial populations in premature
infants until there is standardisation of protocols. This
review aimed to describe the most common techniques
used in researching the preterm infant microbiome, and
their limitations. The objective was to provide those
entering the field with a broad understanding, so that
considerations can be taken for both literature
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interpretation and future study design. 16S rRNA ampli-
con sequencing is the most commonly used method, as
it is cheaper than both long-read and shotgun metage-
nomic sequencing, more detailed than non-molecular
techniques and allows the characterisation of taxa
present across a wide range of samples. This approach,
however, has several limitations that can introduce bias.
Full length sequencing of the 16S gene or a shotgun
metagenomics approach may provide better options, es-
pecially as accuracy continues to increase, along with a
reduction in cost. However, until these options become
more viable, 16S high throughput sequencing targeting a
select number of hyper variable sub-regions will con-
tinue to dominate.
There are a number of options at different stages

within 16S sequencing methods that can contribute to
bias, and with the large number of tools and databases
available, it can be a difficult task deciding on an optimal
approach. In this work we briefly described the bias
across methodologies, with emphasis on 16S techniques.
The most commonly used techniques within 16S rRNA
high throughput sequencing are sample storage at -80°C,
QIAamp DNA Stool Kit for extraction, sequencing on
the Roche 454 platform, targeting the V4 region, and
using the QIIME or QIIME2 pipeline in combination
with the Ribosomal Database Project reference database.
However, the optimal combination for 16SrRNA se-
quencing would likely be storage at -80°C, an extraction
kit that includes mechanical lysis, such as (IHMS) Proto-
col Q or the Power Faecal Pro (Qiagen), use of the Illu-
mina platform, targeting of the V3/V4 regions, using the
QIIME2 pipeline (or at least error modelling) in combin-
ation with the SILVA database. However, the research
question, as well as reproducibility and consistency
across studies should also be considered. To conclude,
until standardisation of microbiome research occurs,
significant consideration needs to be given to ensure
correct interpretation of the literature and robust study
design.
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